QUASI PERIODIC ORBITS IN THE VICINITY OF THE SUN-EARTH L_2 POINT AND THEIR IMPLEMENTATION IN “SPECTR-RG” & “MILLIMETRON” MISSIONS

IVAN ILIN, ANDREW TUCHIN

KELDYSH INSTITUTE OF APPLIED MATHEMATICS
RUSSIAN ACADEMY OF SCIENCES

24th International Symposium on Space Flight Dynamics
Laurel, Maryland, 5-9 May, 2014
APPLICATION OF QUASI PERIODIC ORBITS NEAR LIBRATION POINTS

ESA space telescope “Gaia”
launched on 19.12.13,
direct transfer to a Lissajous orbit in the vicinity of the Sun-Earth L₂ point

Roscosmos space telescope “Spectr-RG”
launch: scheduled at the end of 2015
direct transfer to a Lissajous orbit in the vicinity of the Sun-Earth L₂ point
Scientific mission: X-rays and Gamma range high precision sky survey, black holes, neutron stars, supernova explosions and galaxy cores study.

Roscosmos space telescope “Millimetron”
launch: scheduled in 2018
direct transfer to a big radius quasi-halo orbit in the vicinity of the Sun-Earth L₂ point
Scientific mission: space observation in millimeter, sub-millimeter and infrared ranges. The 12m space telescope will operate at cryogenic temperatures near 4K providing unique sensibility.
PERIODIC AND QUASI-PERIODIC MOTIONS AROUND L\textsubscript{2} POINT

Quasi-Halo Orbit

Earth

Moon Orbit

L\textsubscript{2} Point
THREE BODY PROBLEM APPROXIMATION

1. Solution of the system of the linearized equations, describing circular restricted TBP

\[\xi_1 = A(t) \cos(\omega_1 t + \varphi_1(t)) + C(t)e^{\lambda t}, \quad A_{\min} \leq A(t) \leq A_{\max} \]

\[\xi_2 = -k_2 A(t) \sin(\omega_1 t + \varphi_1(t)) + k_1 C(t)e^{\lambda t} \]

\[\xi_3 = B(t) \cos(\omega_2 t + \varphi_2(t)), \quad |C(t)| \leq C_{\max} \]

2. Richardson 3d order analytical approximation of periodic motion about the collinear points, obtained with the help of Lindstedt-Poincaree technique applied to Legendre polinomial expansion of the classical CRTBP equations of motion

\[x = a_{21} A_x^2 + a_{22} A_z^2 - A_x \cos \tau_1 + (a_{23} A_x^2 - a_{24} A_z^2) \cos 2\tau_1 + (a_{31} A_x^3 - a_{32} A_x A_z^2) \cos 3\tau_1 \]

\[y = k A_x \sin \tau_1 + (b_{21} A_x^2 - b_{22} A_z^2) \sin 2\tau_1 + (b_{31} A_x^3 - b_{32} A_x A_z^2) \sin 3\tau_1 \]

\[z = \delta_n A_z \cos \tau_1 + \delta_n d_{21} A_x A_z (\cos 2\tau_1 - 3) + \delta_n (d_{32} A_x A_z^2 - d_{31} A_z^3) \cos 3\tau_1 \]

\[\delta_n = 2 - n, \quad n = 1,3 \quad A_z \geq 0 \quad A_x > 0 \quad A_{x_{\min}} \geq Q \]
QUASI PERIODIC SOLUTION IN RTBP
TRANSITION FROM CIRCULAR RTBP TO ELLIPTIC RTBP

CRTBP

• Quasi-periodic orbit approximation:
 Richardson model

 \[
 \begin{align*}
 x &= \rho \xi \\
 y &= \rho \eta \\
 z &= \rho \zeta \\
 \rho &= \frac{p}{1 + e \cos f}
 \end{align*}
 \]

 \[
 \begin{align*}
 \frac{dx}{df} &= \frac{dx}{dt} \cdot \frac{dt}{df} \\
 \frac{dt}{df} &= \frac{p^{3/2}}{(1 + e \cos f)^2}
 \end{align*}
 \]

 \[
 \begin{align*}
 \xi' &= \dot{x} - \frac{p^{3/2}}{(1 + e \cos f)} + x(-e \sin f) \\
 \eta' &= \dot{y} - \frac{p^{3/2}}{(1 + e \cos f)} + y(-e \sin f) \\
 \zeta' &= \dot{z} - \frac{p^{3/2}}{(1 + e \cos f)} + z(-e \sin f)
 \end{align*}
 \]

ERTBP

• Libration points in the RTBP are homographic, which means they keep their relative position when transfer to the ERTBP is performed

 \[
 \text{transfer from dimensionless true anomaly } f \text{, describing evolution of the elliptic system, to the dimensionless time } t \text{ of the TBP is performed}
 \]

 \[
 \frac{tg(E/2)}{1 + e \sqrt{1 - e}} = \frac{tg(f/2)}{1 + e \sqrt{1 - e}}
 \]

 \[
 M = E - e \sin E \\
 t_{\text{dimensionless}} = M
 \]

• A periodic halo orbit approximation is built with the help of Richardson model

• TBP state vector \((x, y, z, \dot{x}, \dot{y}, \dot{z})\) is converted to Nehvill dimensionless variables \((\xi, \eta, \zeta, \dot{\xi}, \dot{\eta}, \dot{\zeta})\)
The transfer trajectory to the selected quasi-periodic orbit is searched within the invariant manifold of the restricted three body problem with help of the isoline method. This method provides connection between periodic orbit dots and geocentric transfer trajectory parameters – the isolines of transfer trajectory pericentre height function depending on periodic orbit parameters are built. This provides one-impulse transfer from LEO to the quasi-periodic orbit.

1-impulse flight trajectories are separated out with the condition:
\[r_{\pi} = r_{\pi}^* \]

With the fixed \(A, B \) and \(C = 0 \) the isoline is built in the \(\phi_1, \phi_2 \) plane:
\[r_{\pi}(\phi_1, \phi_2) = r_{\pi}^* \]
SPACECRAFT TRAJECTORY CALCULATION ALGORITHM STRUCTURE

Periodic orbit parameters
A, B, LEO parameters r_π, r_α

Data, inclination selection

Quasi-periodic solution obtained in ERTBP

Transfer trajectory initial approximation building algorithm

Isoline building algorithm

Edge conditions: correction of B value, C = 0; max t in the vicinity of periodic solution

Selection of trajectories with min ΔV

Transfer trajectory exact calculation

Shadow zones and radio visibility zones calculation, solution analysis

Stationkeeping impulses calculation
STATIONKEEPING IMPULSES CALCULATION

The correction impulse vector is calculated according to the condition of the maximum time of the spacecraft staying in the \(L_2 \) point vicinity of the stated radius after the correction has been implemented. The maximum time is searched for with the help of the gradient method.

\[
\Delta \vec{V}_i = \frac{1}{2^q} \frac{\Delta V_{\text{max}}}{|\nabla F_c|} (\nabla F_c)^T
\]

\[
R(\theta_A, \theta_B) = r_L \cdot \sqrt{\theta_B^2 + (1 + k_2^2) \theta_A^2}
\]

\[
F_c = \begin{cases}
 t_{\text{out}L2} - t_{\text{in}L2} \\
 \frac{1}{T} \int_{t_1}^{t_1+T} \left((B(t) - \theta_B r_L)^2 + C(t)^2 \right) dt
\end{cases}
\]

\(\Delta V_{\text{max}} \) - the biggest possible value of the impulse;

\(q \) - step decrease controlling coefficient.
Advantages: Moon swing by maneuver allows to obtain more compact orbit
Disadvantages: Trajectories become time-dependent and mission robustness decreases as the maneuver execution errors may cost a lot of ΔV to correct

Quasi-periodic orbit obtained without the Moon swing by maneuver
$Ay = 0.8$ million km

Quasi-periodic orbit obtained with the help of Moon swing by maneuver
$Ay = 0.5$ million km

The XY plane view of the rotating reference frame, mln. km.
QUASI PERIODIC ORBITS
FOR “SPECTR-RG” & “MILLIMETRON” MISSIONS

Total ΔV costs are less than 15 m/s for 7 years period.
QUASI PERIODIC ORBITS FOR "SPECTR-RG" & "MILLIMETRON" MISSIONS
XY, XZ, YZ PROJECTIONS ON THE ROTATING REFERENCE FRAME

Dimension: thousands of km
EVOLUTION OF DIMENSIONLESS PARAMETERS DESCRIBING THE QUASI-PERIODIC ORBIT GEOMETRY

\[\theta_A = \frac{A}{R_L} \]

\[\theta_B = \frac{B}{R_L} \]

\[\theta_C = \frac{C}{R_L} \]
RESEARCH RESULTS

- A new method of quasi periodic orbits construction, generalizing Lindstedt-Poincaree-Richardson technique for the ERTBP case has been developed and programmed.

- M.L. Lidov’s isoline building method providing one-impulse transfers from LEO to a quasi-periodic orbit in the vicinity of a collinear libration point has been extend on gravity assist trajectory class.

- An algorithm calculating stationkeeping impulses for the quasi periodic orbit maintenance has been developed and programmed. It provides stationkeeping strategies for spacecraft lifetime over 7 years, total ΔV costs are within 15 m/sec.

- Nominal trajectories for Spectr-RG and Millimetron missions have been obtained by performing the calculation described above in the full Solar system ballistic model. All the restrictions such as Earth and Moon shadow avoidance conditions and constant radio visibility from the Northern hemisphere have been met.
LITERATURE LIST

• I.S. Ilin, V.V. Sazonov, A.G. Tuchin. Construction of the flights from low Earth orbits to local orbits near the libration point in the Sun – Earth system. KIAM RAS preprint, 2012.
